Skip to main content

Concours d’image 2024

Image #1

Image soumise par: Marie Roussel

French Cancan


Des marqueurs placés sur les articulations de la patte arrière (crête iliaque, hanche, genou, cheville, articulation metatarso-phalangienne et orteils) nous permettent de reconstruire son mouvement au cours de la marche. En utilisant des outils optogénétiques chez la souris, nous avons activé des neurones excitateurs d’un centre locomoteur du cerveau afin d’améliorer la marche après une lésion de la moelle épinière. Ici, le mouvement de la patte arrière ipsilésionnelle, amélioré par la stimulation, a été dupliqué plusieurs fois. Certains y verront une tarentule endeuillée, d’autres y verront des plumes de danseuses de French Cancan ou bien même une nouvelle version du test de Rorschach. Nous avons opté pour les plumes de French Cancan puisque nos stimulations optogénétiques normalisent la coordination intra-articulaire de la patte ipsilésionnelle permettant ainsi à nos souris de retrouver : l’amplitude, la fluidité et la rapidité de mouvement nécessaires à reprise de la danse French Cancan.

Image #2

Image soumise par: Louis Baillot

Graft of human ESC-derived dopamine neurons overexpressing RIT2 in a mouse midbrain.


A 2 months old graft of ESC-derived dopamine neurons (green) overexpressing RIT2 (white) in the ventral tegmental area (red) of an RAG1KO immunodeficient adult mice. The overexpression of RIT2 could have a protective role and promote neuronal survival in Parkinson’s disease.

Image #3

Image soumise par: Jennifer Cabana

Tout en couleur


Organoïde cérébral dérivé de cellules souches embryonnaires humaines (hESCs), âgé de 47 jours. Ces mini-cerveaux offrent un modèle d’étude prometteur pour les troubles du neurodéveloppement, comme le syndrome de Rett et l’autisme.

Image #4

Image soumise par: Adeline Collignon

The blood-brain barrier


Epifluorescence microscopy of a blood vessel (in red), surrounded by astrocytes (in magenta) and microglial cells (in yellow) in the brain of a mouse. Together, these cells support brain homeostasis. Their dysfunction is implicated in various neurological disorders, such as depression

Image #5

Image soumise par: Jesus David Charry Sanchez

Roots of behavior


Roots of behavior is composed by a group of pyramidal glutamatergic cells located in the medial prefrontal cortex, sending its projections to the nucleus accumbens. These two regions are highly involved in encoding different types of behaviors, such as social interactions, and aversive and rewarding stimuli.
These neurons are marked using an intersectional viral approach using a CRE-dependent – GCaMP6 virus.

Image #6

Image soumise par: Marta Snapyan

TEM image of a unique dendro-dendritic reciprocal synapse in the mouse olfactory bulb (Yin-Yang symbol)


This image is derived from the mice olfactory bulb and demonstrates a unique type of synapse, dendro-dendritic reciprocal synapse between the apical dendrite of GCs and the lateral dendrite of mitral cells (MCs).
The dendro-dendritic reciprocal synapse is a unique type of synapse because it is a bidirectional synapse with both excitatory and inhibitory components. Electron microscopy evidence indicates that MC dendrites contain synaptic vesicles clustered around active zone. GCs contact MCs via large, vesicle-containing spines that are both pre- and postsynaptic to MC dendrites. Virtually all of these contacts directly oppose MC release sites, and this synaptic arrangement is believed to form the basis for reciprocal dendro-dendritic inhibition.
PS. In this image you can clearly see the Yin-Yang symbol, which originated in ancient Chinese philosophy, where opposing forces are seen as interconnected and balancing each other. This photo is similar to this symbol and visualizes a bidirectional type of synapse.

Image #7

Image soumise par: Parisa Iloun

Colleagues within the hippocampus: superficial and deep pyramidal cells


The image shows two subtypes of hippocampal CA1 area pyramidal cells, the superficial and deep cells. These less-explored subtypes play a role in information processing by establishing asymmetrical neural networks with CA1 interneurons.

Image #8

Image soumise par: Jonathan Munro

A window to the brain


Cross-sectional image of a monkey retina illustrating the different layers. This was achieved with fluorescent immunostaining for DAPI (blue), THY1 (green), and glutamine synthetase (red).

Image #9

Image soumise par: Alexy Pelletier-Rioux

Transsynaptic protein organization in acute brain slices using super-resolution microscopy


Here we see the organization of pre/post synaptic proteins Vglut1 (blue) and PSD95 (magenta) respectively as well as AMPA receptor (green) (GluA1 subunit) in the CA1 region (hippocampus) of a young mouse. The brain slice was first fixed with glyoxal then stained using immunostaining. The image was taken with STED super-resolution microscopy. Scale bar = 2 um

Image #10

Image soumise par: Laurence Paquet

Infection d’un neurone par des AAV-ManAz-DBCO-Cy5


Neurone d’hippocampe de rat en culture infecté par des AAV marqués (rouge). Les microtubules (vert) et le noyau (bleu) ont été marqués par immunocytochimie. Des AAV marqués sont visibles à l’intérieur des cellules. Cette technique de marquage des AAV permettra de mieux comprendre leur processus infectieux.

Image #11

Image soumise par: Felipe Da Gama

It’s all about communication


Communication between neurons is essential to the proper functioning of the central nervous system, which regulates the body as a whole. The image entitled « It’s all about communication » shows, in the center, the nuclei of neurons, and in purple/orange, the extensions that enable communication between neuronal cells. In certain pathologies, such as multiple sclerosis, neurons degenerate, leading to the appearance of symptoms. In this image, we can see healthy neurons communicating with each other. In our research laboratory, we are working to prevent degeneration and repair the neural circuits of people with multiple sclerosis.

Image #12

Image soumise par: Laurie-Shan Verville

Dévoilement de l’invasion protéique


Représentation par microscopie à fluorescence (20X) de l’aggrégation de la protéine d’α-synucléine phosphorylée (vert) dans les neurones à acétycholine (rouge) avec coloration DAPI (bleu), dans la région du noyau pédonculopontin du tronc cérébral d’un cerveau post-mortem humain atteint de la maladie de Parkinson.

Image #13

Image soumise par: Marion Boyer

Neuromuscular junction (NMJ) in mouse tibialis muscle.


Immunofluorescence of a mouse tibialis muscle section labeled with NFH/SV2 (Terminal axon, green) and BTX (post-synaptic NMJ, red).

Image #14

Image soumise par: Mari Carmen Pelaez

La jonction neuromusculaire / The Neuromuscular Junction


La jonction neuromusculaire est cruciale pour la motricité. Il s’agit d’une synapse super-spécialisée entre le neurone moteur et le muscle qui permet la transmission d’informations entre ces tissus. Dans des maladies telles que la sclérose latérale amyotrophique, cette jonction est compromise par la neurodégénérescence. Cela conduit à la paralysie et à la perte des mouvements volontaires chez les patients. / The neuromuscular junction is crucial for motor movement. It is a super-specialized synapse between the motor neuron and the muscle that allows information to be transmitted between these cells. In diseases such as amyotrophic lateral sclerosis, this junction is compromised due to neurodegeneration. Leading to paralysis and loss of voluntary movement in patients.

Image #15

Image soumise par: Lydia SAIDI

Serotonin neurons among the stars


Serotonin neurons, unsung heroes in Parkinson’s disease (PD), play a crucial role in converting exogenous L-Dopa into dopamine. Thus, these neurons are able to release serotonin, dopamine, and glutamate. This image is an immunostaining of serotonin neurons (red) and the atypical vesicular glutamate transporter 3, VGluT3 (white) in the dorsal raphe nucleus of PD mouse model.

Image #16

Image soumise par: Beatriz ELena Lucumí Villegas

Midbrain-striatal assembloid


This image shows the development of neuronal projections from a dopaminergic midbrain organoid (cyan) to a striatal organoid (magenta) within a midbrain-striatal assembloid, mimicking the nigrostriatal pathway. These organoids, derived from human induced pluripotent stem cells, were labeled with fluorescent proteins and fused after 40 days of culture growth. Witness the convergence of cutting-edge science and technology as we delve deeper into understanding neural circuits.

Image #17

Image soumise par: Owen Ferguson

Long distance relationships


Human dopaminergic neurons are incubated on opposite sides of a wall. Only a few days after that wall is removed, we can see these neurons reaching out to their long-lost partners.

Image #18

Image soumise par: Luisa Bandeira Binder

Astrocytes and blood vessels, a love story


Astrocyte (green) double staining with GFAP and S100B and Blood vessels (red) stained for podocalyxin

Image #19

Image soumise par: Thyago Cardim-Pires

When normal goes awry


Protein aggregates produced by normal huntingtin

Image #20

Image soumise par: Zahra Yazdani

Cosmos web inside neuronal network


This mesmerizing image captures the intricate beauty of a rat cortical neuron cell culture, taken using advanced digital holography microscopy. At 19 days in vitro (DIV), the neural networks resemble the vast expanse of galaxy clusters, evoking the awe-inspiring complexity of the cosmic web.

Image #21

Image soumise par: Johan Chaniot

Microscopic galaxy: the hidden beauty of the astrocyte


This image reveals the internal structure of a rat astrocyte thanks to a unique microscope enhanced by artificial intelligence offering unparalleled image quality. Polychromatic digital holographic microscopy (P-DHM) at 20x magnification is combined with a unique supervised deep learning strategy called v[P-DHM] to produce this quasi-noise-free image. To study the development of psychiatric disorders such as schizophrenia, bipolarity and major depression, a comparison of these images with those of healthy cells is conducted to identify biomarkers for early detection in children at risk. This approach aims to develop innovative strategies for the primary prevention of psychiatric disorders.

Image #22

Image soumise par: Ariane Gosselin

Subtle structure playing a role in the shadows


Extracellular matrix of a mouse hippocampal slice stained by immunofluorescence. Neurons (green) can be surrounded by a structure called perineuronal net (PNN), which plays various roles, including neuronal plasticity and survival. Here, PNN are stained with both aggrecan (cyan) and hyaluronic acid chains (magenta).

Image #23

Image soumise par: Imane Hadj-Aissa

Astrocyte mitochondrial network


This image shows a mitochondrial staining by MitoTracker in astrocytes.

Image #24

Image soumise par: Walid Idi



Immortalized kidney cells undergoing apoptosis containing alpha-synuclein aggregates (LUT: magenta-yellow) alongside an abnormal accumulation of autophagosomes (in cyan).
We used here the LIPA (Light-Inducible Protein Aggregation) system to induce alpha-synuclein aggregation, and chloroquine to inhibit the autophagy-lysosomal pathway inducing autophagosome accumulation. A phalloidine staining was performed to stain the actin filaments (in white).

Image #25

Image soumise par: Maxime Teixeira

Cellular highways highlighted by STED microscopy


COS-7 cells, stained for filamentous actin (orange), shows a distriubtion of microtubules (blue) underligning the complex trafficking happening inside the cell.

Image #26

Image soumise par: Julia Obergasteiger

Talking science


Science is communication, with our brain, words and hands…

Image #27

Image soumise par: Victoria de los Angeles Soto Linan

« Echoes of Enlightenment: DNA’s Golden Harmonies »


Through the fabric of nature, it gracefully roams,
From cosmos’ spirals to life’s intricate turns,
In galaxies’ dance and beings’ fine line,
The Golden Ratio, a pattern divine.

Image #28

Image soumise par: Luca Pancotti

Reciprocal connection between cortex and ventral tegmental area: a complex integrative interface.


Cells in the Ventral Tegmental Area (Blue: marker of dopaminergic cells) connected with the Prefrontal Cortex. Red cells sends projections to cortex; Green cells are contacted by cortical cells. Yellow signal results from cells which send information and receive feedback. The exchange between cortex and VTA, where input and output intersect, plays a critical role in the stress response.

Image #29

Image soumise par: dylan Musiol

Alliances au-delà des Espèces : Neurones Murins et Cellules Humaines


Cette image représente des neurones de souris (en bleu) avec des cellules humaines produisant la protéine alpha-synucléine (en orange). Le rouge représente les noyaux d’ADN présents dans les cellules. L’objectif de cette expérience est de visualiser si, dans des conditions particulières de stress, ces cellules peuvent transmettre cette protéine à d’autres cellules
Photographie prise à l’aide d’un microscope confocal, grossissement x40, couleurs factices